The mismatch repair and meiotic recombination endonuclease Mlh1-Mlh3 is activated by polymer formation and can cleave DNA substrates in trans

نویسندگان

  • Carol M Manhart
  • Xiaodan Ni
  • Martin A White
  • Joaquin Ortega
  • Jennifer A Surtees
  • Eric Alani
چکیده

Crossing over between homologs is initiated in meiotic prophase by the formation of DNA double-strand breaks that occur throughout the genome. In the major interference-responsive crossover pathway in baker's yeast, these breaks are resected to form 3' single-strand tails that participate in a homology search, ultimately forming double Holliday junctions (dHJs) that primarily include both homologs. These dHJs are resolved by endonuclease activity to form exclusively crossovers, which are critical for proper homolog segregation in Meiosis I. Recent genetic, biochemical, and molecular studies in yeast are consistent with the hypothesis of Mlh1-Mlh3 DNA mismatch repair complex acting as the major endonuclease activity that resolves dHJs into crossovers. However, the mechanism by which the Mlh1-Mlh3 endonuclease is activated is unknown. Here, we provide evidence that Mlh1-Mlh3 does not behave like a structure-specific endonuclease but forms polymers required to generate nicks in DNA. This conclusion is supported by DNA binding studies performed with different-sized substrates that contain or lack polymerization barriers and endonuclease assays performed with varying ratios of endonuclease-deficient and endonuclease-proficient Mlh1-Mlh3. In addition, Mlh1-Mlh3 can generate religatable double-strand breaks and form an active nucleoprotein complex that can nick DNA substrates in trans. Together these observations argue that Mlh1-Mlh3 may not act like a canonical, RuvC-like Holliday junction resolvase and support a novel model in which Mlh1-Mlh3 is loaded onto DNA to form an activated polymer that cleaves DNA.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

mlh3 mutations in baker’s yeast alter meiotic recombination outcomes by increasing noncrossover events genome-wide

Mlh1-Mlh3 is an endonuclease hypothesized to act in meiosis to resolve double Holliday junctions into crossovers. It also plays a minor role in eukaryotic DNA mismatch repair (MMR). To understand how Mlh1-Mlh3 functions in both meiosis and MMR, we analyzed in baker's yeast 60 new mlh3 alleles. Five alleles specifically disrupted MMR, whereas one (mlh3-32) specifically disrupted meiotic crossing...

متن کامل

P-205: Analysis of Mlh3 C2531T Polymorphism in Iranian Women with Unexplained Infertility

Background: Infertility is increasingly recognized as a major health problem. Meiotic genes are very important candidates for genes contributing to female and male infertility. Mammalian MutL homologues have dual roles in DNA mismatch repair (MMR) after replication errors and meiotic reciprocal recombination. There are four MutL homologues in eukaryotes that mutations of three of them (Mlh1, Ml...

متن کامل

Distinct DNA-binding surfaces in the ATPase and linker domains of MutLγ determine its substrate specificities and exert separable functions in meiotic recombination and mismatch repair

Mlh1-Mlh3 (MutLγ) is a mismatch repair factor with a central role in formation of meiotic crossovers, presumably through resolution of double Holliday junctions. MutLγ has DNA-binding, nuclease, and ATPase activities, but how these relate to one another and to in vivo functions are unclear. Here, we combine biochemical and genetic analyses to characterize Saccharomyces cerevisiae MutLγ. Limited...

متن کامل

A mutation in the putative MLH3 endonuclease domain confers a defect in both mismatch repair and meiosis in Saccharomyces cerevisiae.

Interference-dependent crossing over in yeast and mammalian meioses involves the mismatch repair protein homologs MSH4-MSH5 and MLH1-MLH3. The MLH3 protein contains a highly conserved metal-binding motif DQHA(X)(2)E(X)(4)E that is found in a subset of MLH proteins predicted to have endonuclease activities (Kadyrov et al. 2006). Mutations within this motif in human PMS2 and Saccharomyces cerevis...

متن کامل

Interference-dependent crossing over in yeast and mammalian meioses involves the mismatch repair protein homologs MSH4-MSH5 and MLH1-MLH3. The MLH3 protein contains a highly conserved metal binding motif DQHA(X)2E(X)4E that is found in a subset of MLH proteins

Interference-dependent crossing over in yeast and mammalian meioses involves the mismatch repair protein homologs MSH4-MSH5 and MLH1-MLH3. The MLH3 protein contains a highly conserved metal binding motif DQHA(X)2E(X)4E that is found in a subset of MLH proteins predicted to have endonuclease activities (KADYROV et al. 2006). Mutations within this motif in human PMS2 and S. cerevisiae PMS1 disrup...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 15  شماره 

صفحات  -

تاریخ انتشار 2017